Utilization Of Plant Extractives And Compounds For Sitophilus Oryzae (Rice Weevil) Management

Sylvia Awino Opiyo

Department Of Physical And Biological Sciences, Murang'a University Of Technology, Kenya

Abstract

In stored crops, Sitophilus oryzae (rice weevil) can cause damage of up to 80%, depending on the circumstances of storage. A vast variety of grains and seeds, including sorghum, wheat, corn, oats, rye, barley, rice, and beans, are all highly palatable to the bug. The most practical and effective technique to control insect pests in stored food products is to use synthetic insecticides. These substances do, however, have adverse effects on the ecosystem. It has been established that plants contain important compounds that are poisonous to insects. Because they are renewable, do not persist in the environment, and are generally safe for use by humans, nontarget creatures, and natural enemies, botanicals are the preferred method of controlling pests and diseases. A lot of research has been done to determine the efficacy of plant extracts in management of rice weevil. However, the information is scattered in different publishes articles. This paper provides a review on insecticidal activity of plant extracts against Sitophilus oryzae. From the results, the most studied plant species belong to the Lamiaceae family (20) followed by Asteraceae (16), Fabaceae (9), Labiatae (9), Rutaceae (9), Myrtaceae (7) and Zingiberaceae (6). The efficacy of plant extracts against the insects depend on the type of plant, extract concentration, growth conditions, exposure duration, and plant part used. The study's findings confirm that certain plant extracts are highly poisonous, repellant, antifeedant, and have the ability to suppress growth and oviposition in Sitophilus oryzae (L.) and may offer an alternate method of preventing weevil damage to stored crops. However, very little is known about plant-derived insecticidal chemicals against the weevil. Further study to find such insecticidal ingredients and formulations is recommended.

Keywords: Rice weevil; Sitophilus oryzae; stored grains; Insecticide; plant extracts; plant compounds

Date of Submission: 21-07-2024

Date of Acceptance: 31-07-2024

I. Introduction

Worldwide, stored insect pests are a serious issue since they drastically lower food yields and quality. One of the worst insect pests is the rice weevil, *Sitophilus oryzae* (L.) (Coleoptera: Curculionidae), which can inflict damage of 10 to 65 percent in moderate storage circumstances and up to 80 percent in long storage conditions¹. This pest, which has a global spread, is particularly harmful in warm and humid environments. Both the adult insects and their larvae exhibit a ravenous appetite for a wide range of grains and seeds, such as sorghum, wheat, corn, oats, rye, barley, rice, and dry beans². According to Huang and Subramanyam, synthetic insecticides are the most practical and efficient way to manage insect pests in stored goods³. Due to their sluggish rate of environmental biodegradation and the presence of some hazardous residues that are harmful to the health of mammals, these compounds are linked to unfavorable environmental impacts⁴⁻¹¹. The need for efficient and biodegradable pesticides has increased due to the negative impacts of synthetic pesticides.

Natural products are a great way to lessen harmful effects on the environment and human health when compared to synthetic pesticides¹²⁻¹⁹. Botanical powders and extracts are among the many types of natural materials that have drawn special attention as natural treatments for pest management. It has been determined that plants are a source of significant chemicals that are poisonous to harmful pests and microorganisms²⁰⁻²². The use of botanical for pests and disease control is preferred because they are renewable, non-persistent in the environment and relatively safe to natural enemies, non-target organisms and human beings²³⁻³⁰. In addition, chances of pests and pathogens developing resistance to botanical pesticides are highly unlikely. Furthermore, plant extracts have been widely used as anti-parasitical, bactericidal, fungicidal, antiviral and insecticidal materials³¹⁻³⁷. There are numerous investigations on the insecticidal activity of plant extracts against the rice weevil *S. oryzae*. Search for insecticidal compound from plants has yielded important compounds including alkaloids, terpenoids, flavonoids, steroids and quinones³⁸⁻⁴³. Such compounds. This paper provides a review on insecticidal activity of plant extracts with emphasis on plant extracts exhibiting toxicity, repellent, antifeedant, oviposition deterrent and growth inhibition activities against *Sitophilus oryzae* (L.).

II. Rice Weevil Insecticidal Plant Extracts

The insecticidal activities of several plant species against *Sitophilus oryzae* have been evaluated using various bioassay techniques^{44, 45}. Out of the 131 plant species identified, the most studied plant species belong to the Lamiaceae family (20) followed by Asteraceae (16), Fabaceae (9), Labiatae (9), Rutaceae (9), Myrtaceae (7) and Zingiberaceae (6) (Figure 1 & Table 1). The efficacy of plant extracts was found to vary depending on the type of plant, extract concentration, growth location, exposure duration, and plant part used⁴⁶⁻⁴⁸

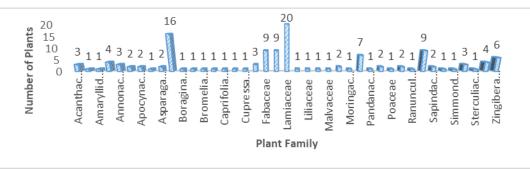


Figure 1. Distribution of the tested insecticidal plants by plant family

Zingiber officinale (ginger), Azadirachta indica (neem), Syzygium aromaticum (clove) and Nicotiana tabacum (tobacco) extracts were tested mortality, grain damage prevention and repellency efficacy against S. oryzae infesting stored wheat. The highest mortality of S. oryzae (99.17%) was recorded in Z. officinale extract, while the lowest mortality (67.50%) was observed in N. tabacum extract. The highest grain damage due to S. oryzae (0.19%) was observed in N. tabacum treated crude extract, while the least grain damage (0.04%) was observed in Z. officinale treated grains. Z. officinale exhibited the highest repellent effect on S. oryzae (95.77%) ⁴⁹. Thymus vulgaris, Schinus molle and Melia azedarach extracts showed mortality, prevention of grain damage and growth inhibition effects against rice weevils at different concentrations. M. azedarach and T. vulgaris extracts gave the highest efficacy⁵⁰. Mohammad and co-workers tested methanolic extracts of Lantana camara (leaves), Carica papaya (seeds), Ricinus communis (leaves), Calotropis gigantea (flowers), and Gliciridia sepium (leaves) for toxiciy effect against rice weevil. Insecticidal effect of the plant extracts was in the following order: Gliciridia sepium > Lantana camera > Galotropis gigantea > Ricinus communis > Carica papaya⁵¹. Cannabis sative L., Dodonaea visicosa L., and Parthenium hysterophorus L. extracts were tested for insecticidal and synergism effect against rice weevil at different concentrations. D. visicosa, P. hysterophorus, and C. sativa caused 97, 90, and 83 percent mortalities respectively at 3% concentration⁵². When used in combination, the effects of *D. visicosa*, *P. hysterophorus*, and *C. sative* produce 100% mortalities⁵².

Essential oil - based nanoemulsions from Carlina acaulis L., Mentha longifolia (L.) and Hazomalania voyronii were evaluated as insecticides against Sitophilus oryzae (L.) on barley, oats, and maize kernels ⁵³. All the tested nanoemulsions showed elevated efficacy when applied on barley, while mortalities were lower on oats and maize. C. acaulis was the most effective, followed by H. voyronii and M. Longifolia⁵³. Neem, clove, lavender, karanj, eucalyptus, lemon grass, and tea tree oils obtained from local market in India were tested for insecticidal effect against rice weevil⁵⁴. Neem oil cause the highest number of deaths (83.33%), followed by karanj oil (77.77%), clove oil (67.77%), eucalyptus oil (57.77%), lemon grass oil (54.44%), tea tree oil (51.10%) and lavender oil (31.11%). Neem oil was the most effective in weight loss prevention (7.32%), followed by karanj oil (11.99%) ⁵⁴. Makai et al found out that peppermint (Mentha piperita), sage (Salvia officinalis) and feverfew (Tanacetum parthenium) had repellent and fatal effects against the insect as compared to control⁵⁵. Mentha piperita was the most effective treatment with mortality rate of 38.33%. Tanacetum parthenium exhibited high repellency of 5.95 % against Sitophilus oryzae. In a study by Arafah et al., Pandanus amaryllifolius and Garcinia atroviridis extracts exhibited repellent, antifeedant and anti-progeny effect against rice weevils. Pandanus amaryllifolius extract was the most effective, with a repellency of 46.67% and antiprogeny effect of 2.175%. Garcinia atroviridis showed an anti-progeny effect of 6.525% ⁵⁶. When Mentha spicata L. (spearmint), Mentha piperita L. (peppermint), Mentha arvensis L. (corn mint) and Mentha citrate L. (bergamot mint) were tested for repellence activity against the insect, Mentha spicata essential oil gave the highest repellency of 66.66% at 12 nL/cm² followed by *M. piperita*, which had 53.33% repellency at 40 nL/cm² concentration. M. arvensis and M. citrata gave 66.66 and 53.33% repellency at 173 nL/cm² concentration⁵⁷. Azadirachta indica (neem) and Piper nigrum (black pepper) exhibited mortality and grain damage protection against rice weevil58.

Kły's *et al* determined the effect of *Carum carvi* L. (caraway) essential oil and L-carvone on the emigration, repellence and mortality of *Sitophilus oryzae*⁵⁹. Caraway essential oil recorded a repellency of (60–98%) while L-carvone at 0.1% caused 16–100% repellence. The highest mortality of *S. oryzae* was caused by

0.5% caraway essential oil and 1% L-carvone. Khanal et al tested extracts from Azadirachta indica A. Juss, Nicotiana tabacum L., Zingiber officinale Roscoe, Allium sativum L, Zanthoxylum armatum Roxb and Acorus calamus L. for insecticidal effect of rice weevil on wheat seed⁶⁰. Acorus calamus recorded had the highest mortality (98.33%), followed by N. tabacum (85.67%), A. sativum (73.34%), A. indica (70.67%), Z. armatum (70.34%) and Z. officinale (58.34%). In onothe study, Acorus calamus, vitex negundo, Adhatoda vasica and Calotropis gigentae showed insecticidal activity against rice weevil in stored wheat seeds⁶¹. A. calamus was most effective in preventing the number of adult emergence, weight loss and seed damage followed by A.vasica, C. gigantean and V. negundo^{61, 62}. Eucalyptus globulus, Lantana camara, Murraya koenigii, Ricinis communis, Vitex negundo, Tagetes erecta, Citrus aurantium, Curcuma longa, Ocimum sanctum and Mentha spicata exhibited fumigant toxicity and repellent effects against rice weevil. Mentha spicata exhibited 83.33% toxicity with maximum repellency of 76.11%. Ocimum sanctum had 80% toxicity and 76.11% repellency. Vitex negundo caused 83.33% toxicity and repellency of 72.78%. Curcuma longa caused 75.56% repellence⁶³. Azadirachta indica, Curcuma longa and Mentha longifolia showed mortality, adult emergence, grain damage prevention against S. oryzae in unhusked and husked rice. The highest mortality rate was recorded in turmeric powder at 93.3% followed by neem at 80% ⁶⁴. Ocimum basilicum, Nigella sativa and Lavandula angustifolia essential oils showed repellent and toxicity effects against Sitophilus oryzae. O. basilicum and L. angustifolia essential oils explicated 100% mortality at 6 mg/cm² after 48 hours exposure⁶⁵. Eucalyptus camaldulensis and Eucalyptus viminalis leaf essential oils showed promising fumigant toxicity against S. oryzae, which was positively dependent on concentrations and exposure times. E. viminalis essential oil, which was found to be rich in monoterpenes was more toxic to insect⁶⁶. In another study, leaf powder of Ageratum conyzoides was the most effective treatment against the weevil with highest mortality (96.67%), lowest population increase (18.33), the least grain damage (12.61%) and weight loss (1.75%), followed by Melia azedarach, Vitex negundo and *Ocimum sanctum*⁶⁷.

Jayakumar et al. reported the toxicity and repellent effects of wintergreen, rosemary, lemon, lavender, geranium, eucalyptus, citronella, aniseed, camphor and vetiver extracts against S. $oryzae^{68}$. In another study, powders of Annona squamosal, Justicia adhatda, A. indica, Carica papaya and Ocimum tenuiflorum showed insecticidal effects against S. oryzae⁶⁹. Farsetia aegyptia (gerba), Mentha pulegium (Egyptian mint) and Moltkiopsis ciliate (halama) extracts showed repellent and toxicity effects against the weevil⁷⁰. Melia azadarach, Perthenium hysterophorus, Phlogocanthus thyrsiflorus, Vitex trifolia, Zanthoxylum acanthopodium and Azadirachta indica exhibited mortality, growth inhibition and grain damage reduction effect against the insect on rice grain⁷¹. Melia azadarach had the highest mortality rate (80.54%) at 35 days after treatment, followed by Z. acanthopodium, A. indica (70.74%), P. hysterophorus and P. thyrsiflorus (56.11) and Vitex trifolia (36.66%). A. indica was the most effective in prohibiting the adult emergence and reduction in grain damage⁷¹. In another study, *Psidium guajava*, *Citrus reticulata*, *Citrus limon*, *Citrus sinensus* and *Azadirachta* indica extracts showed repellent affects against the weevil. Psidium guajava was most effective while A. indica was the least effective. C. reticulata, C. limon and C. sinensus showed moderate repellent effect⁷². Curcuma longa rhizome, Dennettia tripetala fruits, Piper guineense seed and Zingiber officinale rhizome extracts increased adult mortality and suppressed the adult emergence of the rice weevils. P. guineense and D. tripetala gave the highest mean mortality of 18.8 and 16.5 respectively at 35 days after treatment⁷³. Khani *et al.* reported the insecticidal activity of Piper nigrum and Jatropha curcas extracts. Petroleum ether and chloroform extracts of P. nigrum recorded LC₅₀ values of 1.61 and 1.70 µl/g respectively while petroleum ether extract of J. curcas had LC₅₀ value of 6.82 µl/g⁷⁴. Hyptis suaveolens, Mentha cordifolia and Citrus hystrix showed repellency, mortality, grains weight loss protection and growth inhibition effects⁷⁵. Clerodendrum inerme, Withania somnifera, Gliricidia sepia, Cassia tora and Eupatorium odoratum extracts showed mortality and progeny production efficacy against rice weevil. C. inerme and W. somnifera extracts were more effective than G. sepia, C. tora and E. doratum against adult insects⁷⁶.

Govindan and Jeyarajan⁷⁷ reported mortality, adult emergence and grain damage protection efficacy of twenty plant powders. Five days after treatment, the highest mortality was observed in *V. negundo* followed by *A. officinarum, N. speciosum, C. longa* and *A. indica.* The lowest grain weight loss was recorded in *A. indica* at 8.55% at 90th day after treatment⁷⁷. Mohamed and Abdelgaleil⁷⁸ reported toxicity efficacy of essential oils from Egyptian plants namely *Achillea santolina, Artemisia judaica, Citrus reticulata, Schinus terebenthifolius, Mentha microphylla, Lantana camara, Majorana hortensis and Eucalyptus camaldulensis*. Essential oils of *Mentha microphylla* and *Artemisia judaica* were the most potent in contact toxicity assay. Essential oil of *M. microphylla* displayed the strongest insecticidal activity against *S. oryzae in* the fumigant assay⁷⁸. Viglianco *et al.* reported the repellency and anti-feeding effects of *Aloysia polystachia, Solanum argentinum* and *Tillandsia recurvata*. Hexane extract of *S. argentinum* had the strongest repellent effects while ethanol and chloroform extracts of all plants recorded moderate repellency⁷⁹. *Melia azdarach, Myrtus communis, Mentha longifolia, Pegnum harmala* and *Cymbopogon citrates* had insecticidal properties against rice weevil⁸⁰. *Melia azdarach* drupes which was the most effective had 61.2 % mortality, followed by Myrtus communis (48.40%), Mentha

Utilization Of Plant Extractives And Compounds For Sitophilus Oryzae (Rice Weevil) Management

longifolia (47.40%), Melia azadarach leaves (46.80%), Cymbopogon citratus (35.20%) and Pegnum harmala (16.80%)⁸⁰. Lee *et al.*⁸¹ reported the fumigant toxicity effects of essential oils extracted from sixteen Korean spices and medicinal plants was reported and the essential oil from *Mentha arvensis* was found to be the most effective. GC–MS analysis of essential oil from *M. arvensis* showed it to be rich in menthol and menthone followed by β -pinene, α -pinene and linalool. Menthone demonstrated the highest insecticidal activity followed by linalool⁸¹.

	1		ii effects off Subplitus of yzue	
Family	Plant	Common name	Activity	Ref
Acanthaceae	Adhatoda vasica	Adulsa	Adult emergence, weight loss and seed damage, toxicity, repellent	62, 82
Acanthaceae	Justicia adhatda	Malabar nut	Toxicity, adult emergence, grain damage prevention	68
Acanthaceae	Phlogacanthus thyrsiflorus	Lalbasak	Toxicity, adult emergence, grain damage prevention	71
Acoraceae	Acorus calamus	Sweet flag	Mortality, weight loss, grain damage protection, growth inhibition	60, 83 62, 61
Amaryllidaceae	Allium sativum	Garlic	Mortality, adult emergence, grain damage prevention	60
Anacardiaceae	Hazomalania voyronii	Hazomalany	Toxicity, adult emergence,	53
Anacardiaceae	Rhus typhina	Staghorn sumac	Toxicity	84
Anacardiaceae	Schinus molle	Pink peppercorns	Toxicity, prevention of weight loss, damage, and adult emergence	50
Anacardiaceae	Schinus terebinthifolia	Rose pepper	Toxicity	78
Annonaceae	Annona muricata	Prickly Custard apple	Mortality	85
Annonaceae	Annona squamosal	Custard apple	Mortality, adult emergence, grain damage prevention	68
Annonaceae	Dennettia tripetala	Pepperfruit	Toxicity, anti-progeny	73
Apiaceae	Ammi majus	Khella	Mortality, adult emergence, grain damage prevention	86
Apiaceae	Carum carvi	Caraway	Repellent, mortality	59
Apocynaceae	Calotropis gigentae	Giant milkweed	Mortality, adult emergence, weight loss, seed damage	51,62
Apocynaceae	Catharanthus roseus	Bright eyes	Toxicity, repellent	82
Araliaceae	Pimpinella bursa-pastoris	Shepherd's purse	Toxicity	81
Asparagaceae	Asparagus racemosus.	Shatawari	Mortality, adult emergence, grain damage prevention	77
Asparagaceae	Liriope muscari	Lily turf	Toxicity	81
Asteraceae	Achillea santolina	Santolina Yarrow	Mortality	78
Asteraceae	Ageratum conyzoides	Goat weed	Mortality, grain damage protection, growth inhibition	67
Asteraceae	Artemisia judaica	Wormwood	Mortality	78
Asteraceae	Artemisia princeps	Worm wood	Mortality	81
Asteraceae	Carlina acaulis	Carline thistle	Mortality, adult emergence,	53
Asteraceae	Chrysanthemum coronarium	Chrysanthemum	Mortality	81
Asteraceae	Chrysanthemum zawdskii	0	Mortality	81
Asteraceae	Eupatorium adenophorum	Crofton weed	Toxicity, grain damage protection, growth inhibition	67
Asteraceae	Eupatorium odoratum	Fragrant Boneset	Toxicity and progeny production	76
Asteraceae	Matricaria chamomilla	Chamomile	Toxicity	87
Asteraceae	Parthenium hysterophorus	Santa-Maria	Toxicity, adult emergence, grain damage prevention	52, 7
Asteraceae	Solidago canadensis	Canada goldenrod	Toxicity	84
Asteraceae	Solidago gigantea	Giant goldenrod	Toxicity	84
Asteraceae	Tagetes erecta	Marigold	Toxicity and repellent	63
Asteraceae	Tanacetum parthenium	Feverfew	Toxicity, repellent	55
Asteraceae	Taraxacum platycarpum	Dandelion	Toxicity	81
Boraginaceae	Moltkiopsis ciliate	Stone seed	Repellent, toxicity	70
Brassicaceae	Farsetia aegyptia	Gerba	Repellent, Toxicity	70
Bromeliaceae	Tillandsia recurvata	Hanging moss	Repellency and antifeedant	79
Cannabaceae	Cannabis sative	Cannabis	Mortality	52
a :::::	T · · ·	II	Mantallitar	81
Caprifoliaceae	Lonicera japonica	Honeysuckle	Mortality	

Table 1: Some plant extracts with insecticidal effects on Sitophilus oryzae

Cupressaceae	Cupressus sempervirens	Pencil pine	Toxicity	88 74
Euphorbiaceae	Jatropha curcas	Physic nut	Toxicity, antifeedant, progeny reduction	74
Euphorbiaceae	Macaranga postulata	Melgota	Repellent, toxicity	89
Euphorbiaceae	Ricinis communis	Castor	Toxicity, repellent	51, 6
Euphorolaceae	Ricinis communis	Castor	Toxicity, repenent	
Fabaceae	Amorpha fruticosa	Indigo-bush	mortality	84
Fabaceae	Cassia angustifolia	Senna	Mortality, adult emergence, grain damage prevention	77
Fabaceae	Cassia tora		mortality and progeny production	76
Fabaceae	Cesalpinia sappan	Sappan	Mortality, antifeedant	90
Fabaceae	Garcinia atroviridis	Asam	Repellent, antifeedant, anti-progeny	56
Fabaceae	Gliciridia sepium	Gliricidia	Toxicity and growth inhibition	51,7
Fabaceae	Pueraria thunbergiana	Arrowroot	Mortality	81
Fabaceae	Senna alata	Candlesticks	Toxicity	85
Fabaceae	Sesbania grandiflora	Hummingbird	Toxicity, adult emergence, grain damage prevention	77
Labiatae	Mentha arvensis	Corn mint	Repellent	57
Labiatae	Mentha arvensis		Toxicity	81
Labiatae	Mentha citrate	Bergamot mint	Repellent	57
		-	_	
Labiatae	Mentha cordifolia	Kitchen mint	repellency, Toxicity, grain weight loss protection and growth inhibition	75
Labiatae	Mentha longifolia	Mint	Toxicity, repellent, grain damage protection,	53,64,
			growth inhibition	80
Labiatae	Mentha microphylla	Spearmint	Toxicity, adult emergence, grain damage prevention	86, 7
Labiatae	Mentha piperita	Peppermint	Toxicity and repellency	55, 57
Labiatae	Mentha pulegium	Egyptian mint	Repellent, Toxicity	70
Labiatae	Mentha spicata	Spearmint	Repellent, toxicity	57, 6
	_			91
Lamiaceae	Anisomales malabarica	Malabar catmint	Mortality, adult emergence, grain damage prevention	77
Lamiaceae	Leucas aspera Spreng		Toxicity, adult emergence, grain damage prevention	77
Lamiaceae	Ocimum basilicum	Basil	Toxicity, repellent, grain damage protection, growth inhibition	65, 6
Lamiaceae	Ocimum canum	Wild Basil	Toxicity, adult emergence, grain damage prevention	77
Lamiaceae	Ocimum sanctum	Holy Basil	Toxicity, grain damage protection, growth inhibition, repellent	63, 0
Lamiaceae	Ocimum tenuiflorum	Sacred Basil	Toxicity, adult emergence, grain damage prevention	68
Lamiaceae	Clerodendrum inerme	Garden quinine	mortality and progeny production	76
Lamiaceae	Clerodendrum multiflorum	Headache tree	Mortality, grain damage, oviposition, growth	92
Lamiaceae	Clerodendrum viscosum	Glory tree	inhibition Toxicity, grain damage, oviposition, growth	92
Lamiacore	Ilumbia av	Mint1	inhibition	75
Lamiaceae	Hyptis suaveolens	Mint weed	repellency, Toxicity, grain weight loss protection and growth inhibition	
Lamiaceae	Lavandula angustifolia	Lavender	Toxicity, repellent	65
Lamiaceae	Leonurus sibiricus	Honey weed	Toxicity	81
Lamiaceae	Majorana hortensis	Sweet marjoram	Mortality	78
Lamiaceae	Origanum majorana	Marjoram	Toxicity	87
Lamiaceae	Perilla frutescens	Beefsteak	Mortality	81
Lamiaceae	Rosmarinus officinalis	Rosemary	Toxicity	46
Lamiaceae	Salvia officinalis	Common sage	Toxicity, repellency	55
Lamiaceae	Thymus vulgaris	Thyme	Toxicity, prevention of weight loss, damage, and adult emergence	50, 1
Lamiaceae	Vitex negundo	Horseshoe vitex	Toxicity, repellency, grain damage, oviposition, growth inhibition	62, 6 67, 77, 92
Lamiaceae	Vitex trifolia	Chastetree	Toxicity, adult emergence, grain damage prevention	71
Leganiaceae	Strychnuos nuxvomica	Strychnine tree	Toxicity, adult emergence, grain damage prevention	77
Liliaceae	Glorisa superpa	Climbing lily	Toxicity, adult emergence, grain damage prevention	77
Lythraceae	Punica granatum	Pomegranate	Toxicity	87
		0	Mortality, adult emergence, grain damage	77

			prevention	
Meliaceae	Azadirachta indica	Neem	Mortality, repellent, , growth inhibition,	49, 58, 60
			grain damage protection	64,
				67, 68, 7
				72, 77, 8
Meliaceae	Melia azedarach	Azedarach	Toxicity, repellent, prevention of weight	50, 67, 7
Monuccue	mena ageaanach	7 izeduruen	loss, damage, and adult emergence	80
Moringaceae	Moringa oleifera	Moringa	Mortality	85
2		U U		66, 78
Myrtaceae	Eucalyptus camaldulensis	Red gum	Fumigant toxicity	
Myrtaceae	Eucalyptus citriodora	Lemon Gum	Toxicity, grain damage protection, growth	67
			inhibition	
Myrtaceae	Eucalyptus globulus	Blue gum	Toxicity and repellent	63
Myrtaceae	Eucalyptus viminalis	White gum	Fumigant toxicity	66
Myrtaceae	Myrtus communis	Habulas	Repellent and toxicity	80
Myrtaceae	Psidium guajava	Guava	Repellent	72
				49, 87, 9
Myrtaceae	Syzygium aromaticum	Clove	Toxicity, grain damage prevention, repellent	
Pandanaceae	Pandanus amaryllifolius	Pandan	Repellent, antifeedant, anti-progeny	56
Piperaceae	Piper guineense	Cubeb pepper	Toxicity, anti-progeny	73
Piperaceae	Piper nigrum	Black pepper	Toxicity, grain damage protection,	58, 74, 8
1	· · · · · · · · · · · · · · · · · · ·	r -PP	antifeedant, growth inhibition	
Poaceae	Cymbopogon citrates	Lemon grass	Toxicity, repellent	87, 80
		2		84
Polygonaceae	Fallopia japonica	Japanese	Toxicity	04
		knotweed	_	
Polygonaceae	Fallopia x bohemica	Bohemian	Toxicity	84
		knotweed		
Ranunculaceae	Nigella sativa	Black seeds	Toxicity, repellent	65
Rutaceae	Citrus aurantium	Orange	Toxicity	87
Rutaceae	Citrus aurantium	Sour orange	Toxicity and repellent	63
Kutaceae	Curus auranium	Sour orange	Toxicity and repenent	
2		TT 001 11		75
Rutaceae	Citrus hystrix	Kaffir lime	repellency, mortality, grain weight loss	15
			protection and growth inhibition	
Rutaceae	Citrus limon	Lemon	Toxicity, repellent	72, 87
Rutaceae	Citrus reticulata	Mandarine	Repellent, mortality	72, 78
Rutaceae	Citrus sinensus	Sweet orange	Repellent	72
		U U		63, 67
Rutaceae	Murraya koenigii	Curry tree	Toxicity, repellent, grain damage protection,	,
			growth inhibition	71
Rutaceae	Zanthoxylum acanthopodium	Sichuan pepper	Toxicity, adult emergence, grain damage	/1
			prevention	
Rutaceae	Zanthoxylum armatum	Prickly ash	Toxicity, adult emergence, grain damage	60
		-	prevention	
Sapindaceae	Cardiospermum	Balloon vine	Mortality, adult emergence, grain damage	77
~ .1	halicacabum		prevention	
Sapindaceae	Dodonaea visicosa	Hon hush	Toxicity	52
		Hop bush		84
Simaroubaceae	Ailanthus altissima	Tree of heaven	mortality	
Simmondsiaceae	Simmondsia chinensis	Goat nut	Toxicity	46
Solanaceae	Nicotiana tabacum	Tobacco	Toxicity, grain damage prevention, repellent,	49, 60
			growth inhibition	
Solanaceae	Solanum argentinum		Repellency and antifeedant	79
Solanaceae	Withania somnifera	Winter cherry	Toxicity, grain damage, oviposition, growth	92, 77,
Solallaceae	w unania somnijera	winter cherry	inhibition	,
C. 1	TT 1			77
Sterculiaceae	Helicteres isora		Toxicity, adult emergence, grain damage	11
			prevention	
Verbenaceae	Aloysia polystachia	Bee brush	Repellency, antifeedant	79
Verbenaceae	Lantana camara	Big sage	Toxicity, repellent, adult emergence, grain	51, 63, 7
			damage prevention	78, 82
Verbenaceae	Lippia nodiflora	Frog fruit	Toxicity, adult emergence, grain damage	77
verbenaceae	ырры пошуюга	riog nult		
X7 1	<u> </u>	* .	prevention	77
Verbenaceae	Nelumbium speciosum	Lotus	Mortality, adult emergence, grain damage	,,
			prevention	
Zingiberaceae	Alpinia officinarum	Galangal	Mortality, adult emergence, grain damage	77
-		ũ	prevention	
Zingiberaceae	Amomum cardamomum	Cardamom	Antifeedant	94
Lingiociaceae	imonum curuuntonum	Curtainoin	/ millocum	
				63, 64, 7
Zingiberaceae	Curcuma longa	Turmeric	Toxicity and repellent, grain damage	
			protection, growth inhibition	77, 83
Zingiberaceae	Zingiber officinale	Ginger	Toxicity, grain damage prevention, repellent,	49, 60, 7
0	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	č	growth inhibition	77, 83
Zingiberaceae	Zingiber zerumbet	Sour ginger	Antifeedant	94
				80
Zygophyllaceae	Pegnum harmala	Harmal	Repellent and toxicity	

III. Pure Compounds With Insecticidal Effects On Sitophilus Oryzae

Some pure compounds isolated from plants have shown insecticidal effects on rice weevil are shown in Figure 2. Bioassay guided fractionation of methanolic leaf extract of *Gliricidia sepium* lead to isolation of 4-c-methyl-myo-inositol (1) as the toxic compound against rice weevil ⁵¹. α -Cedrol (2), δ -3-carene (3) and α -pinene (4) isolated from the essential oil of *Cupressus sempervirens* were found to be toxic to rice weevil⁸⁸. After 4 days of exposing weevils to 20 µL/L air, α -cedrol (2) caused 100% adult mortality while after 7 days of exposing the insects to 40 µL/L air (%), mortality was found to be 100, 84.3 and 77.5% for α -cedrol (2), α -pinene (4) and δ -3-carene (3) ⁸⁸. In another study, terpinolene (5), carvacrol (6), carene (3) and pulegone (7) were exhibited insecticidal activity against rice weevil⁹⁵. In another study, 1, 8-cineole (8) showed fumigant toxicity effect against the adults of *S. oryzae*⁹⁶.

Kłyś *et al.* ⁵⁹ reported the repellent and mortality effects of L-carvone (9) on *S. oryzae*. At a concentration of 0.1%, L-carvone caused 16–100% repellence against the weevils ⁵⁹. In a study by Tripathi *et al*, d-limonene (10) was investigated for contact and fumigant toxicity, oviposition-deterrent, development inhibition and antifeedant activities against the lesser grain borer, rice weevil, and red flour beetle ⁹⁷. A flour disc bioassay indicated 87.7 to 96.8% feeding-deterrence effect by d-limonene (10) toward all three insect species tested at 60 mg/g food concentration⁹⁷. Two compounds: 2-methoxy-4-(2-propenyl)-phenol (11) and *trans*-caryophyllene (12) which were isolated from *Syzygium aromaticum* (clove oil) showed insecticidal activity against rice weevil. The mortality effect from 2-methoxy-4-(2-propenyl)-phenol (11) was not significantly different from clove oil but it was more repellant than clove oil. On the other hand, *trans*-caryophyllene (12) was less toxic and less repellant than both clove oil and 2-methoxy-4-(2-propenyl)-phenol (11)⁹³.

In a study by Lee *et al.* limonene (**10**), linalool (**13**), menthol (**14**), menthone (**15**), α -pinene (**4**) and β pinene (**16**) which were isolated from *M. arv*ensis were evaluated for their insecticidal activity against rice weevil. Menthone (**15**) was found to be the most toxic (LC₅₀ = 12.7 µl/litre air) followed by linalool (**13**) (LC₅₀ = 39.2 µl/litre air), α -pinene (**4**) (LC₅₀ = 54.9 µl/litre air) and β -pinene (**16**) (LC₅₀ = 78.9 µl/litre air) ⁸¹. Aggarwal *et al.* ⁹⁸ reported the insecticidal compound in *Mentha piperita* extract to be menthol (**14**). The compound showed a repellency effect of 82-100% against *S. oryzae* at 0.353 µg/cm² concentration ⁹⁸.

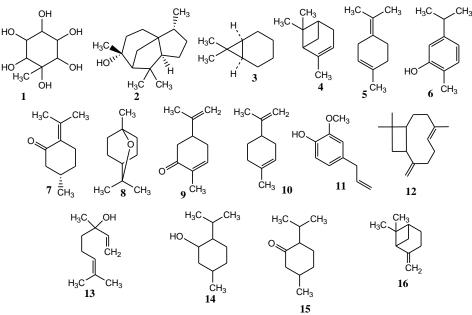


Figure 2. Insecticidal compound against rice weevil

IV. Conclusion

The study's findings indicate that certain plant extracts are highly poisonous, repellant, antifeedant, and have the ability to suppress growth and oviposition in *Sitophilus oryzae* (L.). These extracts may offer an alternate method of preventing weevil damage to stored crops. Numerous plant extracts have been investigated for their potential to repel the rice weevil. However, very little is known about plant-derived insecticidal chemicals. It is strongly recommended to conduct further studies to find such insecticidal ingredients and formulations.

References

- Park D. S., Peterson C., Zhao S., Coats J. (2004). Fumigation Toxicity Of Volatile Natural And Synthetic Cyanohydrins To Stored-Product Pests And Activity As Soil Fumigants. Pest Manag Sci. 60: 833-838.
- [2] Campbell J. (2009). Fitness Consequences Of Multiple Mating On Female Sitophilus Oryzae L. (Coleoptera: Curculionidae). Environ Entomol. 34: 833-843.
- [3] Huang F., Subramanyam B. (2005). Management Of Five Stored-Product Insects In Wheat With Pirimiphos-Methyl And Pirimiphos-Methyl Plus Synergized Pyrethrins. Pest Manag Sci. 61: 356-362.
- [4] Isman M. (2006). Botanical Insecticides, Deterrents, And Repellents In Modern Agriculture And An Increasingly Regulated World. Annu Rev Entomol. 51: 45-66.
- [5] Opiyo S.A. (2021). A Review Of Insecticidal Plant Extracts And Compounds For Stored Maize Protection. Iosr J Appl Chem. 14(10): 23-37.
- [6] Njoroge P. W. And Opiyo S.A. (2019). Some Antibacterial And Antifungal Compounds From Root Bark Of Rhus Natalensis. Am J Chem. 9(5): 150-158.
- [7] Ndirangu E. G., Opiyo S.A., Ng'ang'a M. W. (2020). Repellent Properties Of Compounds And Blends From Nigella Sativa Seeds Against Anopheles Gambiae. Basic Sci Med. 9(1): 1-7.
- [8] Opiyo S. A., Njoroge P. W., Kuria K.M. (2023). Chemical Composition And Biological Activity Of Extracts From Conyza Species. Iosr J Appl Chem. 16(4): 61-71.
- [9] Ochung, A. A., Owuor, P. O., Manguro, L. A. O., Ismael, I. O., Nyunja, R. A., Ochieng, O., & Opiyo, S. A. (2018). Analgesics From Lonchocarpus Eriocalyx Harms. Trends Phytochem Res. 2(4): 253-260.
- [10] Opiyo S. (2022). Stored Grains Protection Activity Of Ocimum Suave Extracts And Compounds On Larger Grain Borer. Iosr J Biotechnol Biochem. 8(4): 5-10.
- [11] Opiyo S. A., Njoroge P. W. (2024). Plant Extracts And Terpenes With Antivenom Properties. Iosr J Appl Chem. 17(3): 31-41.
- [12] Ochieng C., Ishola I., Opiyo S., Manguro L., Owuor P., Wong K. C. (2013). Phytoecdysteroids From The Stem Bark Of Vitex Doniana And Their Anti-Inflammatory Effects. Planta Med. 79(1): 52-59.
- [13] Opiyo S. A., Manguro L. O. A., Owuor P. O., Ochieng C. O., Ateka E. M., Lemmen P. (2011). Antimicrobial Compounds From Terminalia Brownii Against Sweet Potato Pathogens. Nat Prod J. 1(12): 116-120.
- [14] Opiyo S., Njoroge P., Ndirangu E., Kuria K. (2021). A Review Of Biological Activities And Phytochemistry Of Rhus Species. Am J Chem. 11(2): 28-36.
- [15] Kuria K. M., Opiyo S.A. (2020). Characterization Of Immunogenic Soluble Crude Proteins From Biomphalaria Pfeifferi Against Schistosoma Mansoni. J Nat Sci Res. 10(12): 28-34.
- [16] Ndirangu E. G., Opiyo S.A., Ng'ang'a M.W. (2020). Chemical Composition And Repellency Of Nigella Sativa L. Seed Essential Oil Against Anopheles Gambiae Sensu Stricto. Trends Phytochem Res. 4(2): 77-84.
- [17] Opiyo S. A. (2020). Insecticidal Activity Of Ocimum Suave Willd Extracts And Compounds Against Sitophilus Zeamais Motschulsky. Basic Sci Med. 9(2): 32-37.
- [18] Opiyo S. A. (2020). Insecticidal Activity Of Elaeodendron Schweinfurthianum Extracts And Compounds Against Sitophilus Zeamais Motschulsky. Am J Chem. 10(3): 39-44.
- [19] Opiyo S. A., Manguro L. O., Ogur J., Wagai S. (2010). Bioactive Constituents Of Conyza Floribunda. Res J Pharmacol. 4(3): 55-59.
- [20] Opiyo S. (2023). Warburgia Ugandensis: A Review Of Compounds And Bioactivity. Int J Pharmacogn Chem. 4(2): 35-45.
- [21] Njoroge P. W., Opiyo S. A. (2019). Antimicrobial Activity Of Root Bark Extracts Of Rhus Natalensisa And Rhus Ruspolii. Basic Sci Med. 8(2): 23-28.
- [22] Opiyo S.A. (2011). Evaluation Of Efficacy Of Selected Plant Extracts In The Management Of Fungal And Bacterial Diseases Which Affect Sweet Potato. Unpublished Phd Thesis Maseno University Kenya.
- Jeruto P., Arama P., Anyango B., Nyunja R., Taracha C., Opiyo S. (2017). Morphometric Study Of Senna Didymobotrya (Fresen.)
 H. S. Irwin And Barneby In Kenya. J Nat Sci Res. 7(6): 54-69.
- [24] Halder J., Srivastava C., Dureja P. (2010). Effect Of Methanolic Extracts Of Periwinkle (Vinca Rosea) And Bottlebrush (Callistemon Lanceolatus) Alone And Their Mixtures Against Neonate Larvae Of Gram Pod Borer (Helicoverpa Armigera). Indian J Agric Sci. 80: 820-823.
- [25] Opiyo S. A. (2021). Insecticidal Drimane Sesquiterpenes From Warburgia Ugandensis Against Maize Pests. Am J Chem. 11(4): 59-65.
- [26] Opiyo S. A, Mugendi B., Njoroge P.W., Wanjiru S.N. (2023). A Review Of Fatty Acid Components In Avocado. Iosr J Appl Chem. 16(3): 18-27.
- [27] Makenzi A. M., Manguro L. O. A., Owuor P. O., Opiyo S. A. (2019). Flavonol Glycosides With Insecticidal Activity From Methanol Extract Of Annona Mucosa Jacq. Leaves. Trends Phytochem Res. 3(4): 287-296.
- [28] Opiyo S. A. (2021). Repellent Effects Of Ocimum Suave Extracts And Compounds Against Prostephanus Truncatus Horn. Am J Chem. 11(2): 23-27.
- [29] Opiyo S. A., Manguro L. O. A., Owuor P. O., Ateka E. M. (2017). Triterpenes From Elaeodendron Schweinfurthianum And Their Antimicrobial Activities Against Crop Pathogens. Am J Chem. 7(3): 97-104.
- [30] Manguro L. O., Ogur J. A., Opiyo S. A. (2010). Antimicrobial Constituents Of Conyza Floribunda. Webmedcentral Pharmacol. 1(9): 1-11.
- [31] Opiyo S. A., Muna, K. K., Njoroge P. W., Ndirangu E.G. (2021). Analgesic Activity Of Conyza Floribunda Extracts In Swiss Albino Mice. J Nat Sci Res. 12(12): 1-6.
- [32] Manguro L. O. A., Opiyo S. A., Asefa A., Dagne E., Muchori P. W. (2010). Chemical Constituents Of Essential Oils From Three Eucalyptus Species Acclimatized In Ethiopia And Kenya. J Essent Oil Bear Plants. 13(5): 561-567.
- [33] Manguro L. O. A., Opiyo S. A., Herdtweck E., Lemmen P. (2009). Triterpenes Of Commiphora Holtziana Oleo-Gum Resin. Can J Chem. 87(8): 1173-1179.
- [34] Opiyo S. A. (2023). A Review Of Chemical Compounds And Bioactivity Of Conyza Species. Iosr J Appl Chem. 16(6): 36-48.
- [35] Opiyo S. A., Ogur J. A., Manguro L. O. A., Tietze L. F., Schuster H. (2009). A New Sterol Diglycoside From Conyza Floribunda. Afr J Chem. 62: 163-167.
- [36] Ochung' A. A., Manguro L. A. O., Owuor P. O., Jondiko I. O., Nyunja R. A., Akala, H., Mwinzi P., Opiyo, S. A. (2015). Bioactive Carbazole Alkaloids From Alysicarpus Ovalifolius (Schumach). J Korean Soc Appl Biol Chem. 58(6): 839-846.
- [37] Opiyo S. A. (2022). Chemical Composition Of Essential Oils From Ocimum Kilimandscharicum: A Review. Iosr J Appl Chem. 15(11): 5-11.
- [38] Opiyo S. A. (2022). Triterpenes And Sterols From Ocimum Suave. Iosr J Appl Chem. 15(7): 1-6.

- [39] Makenzi A. M., Manguro L. O. A., Owuor P. O., Opiyo S. A. (2019). Chemical Constituents Of Ocimum Kilimandscharicum Guerke Acclimatized In Kakamega Forest, Kenya. Bull Chem Soc Ethiop. 33(3): 527.
- [40] Opiyo S. A. (2019). A Review Of ¹³c Nmr Spectra Of Drimane Sesquiterpenes. Trends Phytochem Res. 3(3): 147-180.
- [41] Ochieng C. O., Opiyo S. A., Mureka E. W., Ishola I. O. (2017). Cyclooxygenase Inhibitory Compounds From Gymnosporia Heterophylla Aerial Parts. Fitoterapia. 119: 168-174.
- [42] Opiyo S. A., Manguro L. O. A., Okinda-Owuor P., Ateka E. M., Lemmen P. (2011). 7α-Acetylugandensolide And Antimicrobial Properties Of Warburgia Ugandensis Extracts And Isolates Against Sweet Potato Pathogens. Phytochem Lett. 4(2): 161-165.
- [43] Opiyo S. A. (2020). Evaluation Of Warburgia Ugandensis Extracts And Compounds For Crop Protection Against Prostephanus Truncates. Adv Anal Chem. 10(2): 15-19.
- [44] Opiyo S. A., Njoroge P. W., Ndirangu E. G. (2022). A Review Pesticidal Activity Of Essential Oils Against Sitophilus Oryzae, Sitophilus Granaries And Sitophilus Zeamais. Iosr J Appl Chem. 15(4): 39-51.
- [45] Opiyo S. A., Manguro L. O. A., Okoth D. A., Ochung A. A., Ochieng C. O. (2015). Biopesticidal Extractives And Compounds From Warburgia Ugandensis Against Maize Weevil (Sitophilus Zeamais). Nat Prod J. 5(4): 236-243.
- [46] Shawer R., El-Shazly M. M., Khider A. M., Baeshen R. S., Hikal W. M., Ahmed M. K. (2022). Botanical Oils Isolated From Simmondsia Chinensis And Rosmarinus Officinalis Cultivated In Northern Egypt: Chemical Composition And Insecticidal Activity Against Sitophilus Oryzae (L.) And Tribolium Castaneum (Herbst). Molecules. 27: 1-13.
- [47] Opiyo S. A., Ateka E. M., Owuor P. O., Manguro L. O. A., Miano D. W. (2010). Development Of A Multiplex Pcr Technique For Simultaneous Detection Of Sweet Potato Feathery Mottle Virus And Sweet Potato Chlorotic Stunt Virus. J Plant Pathol. 92(2): 363-366.
- [48] Opiyo S. A., Ateka E. M., Owuor P. O., Manguro L. O. A., Karuri H. W. (2010). Survey Of Sweet Potato Viruses In Western Kenya And Detection Of Cucumber Mosaic Virus. J Plant Pathol. 92(3): 798-801.
- [49] Atta B., Sabir A., Farooq M., Gogi D., Nasiba A., Ijaz M., Ayub M. A., Nisar M., Saleem M. (2024). Biopesticidal Potential Of Indigenous Plant Extracts Against Rice Weevil In Stored Wheat. Plant Prot. 8: 57-67.
- [50] Alsaoud N., Esber R. (2024). Protecting Rice Grains From Sitophilus Oryzae L. Infestation Using Plant Extracts Under Controlled Conditions. Int J Zoo Anim Biol. 7(3): 1-7.
- [51] Mohammad M. Y., Haniffa H. M., Shakya A. K., Naik R. R., Sivaranjan T. (2024). Evaluation Of Five Medicinal Plants For The Management Of Sitophilus Oryzae In Stored Rice And Identification Of Insecticidal Compound. Heliyon. 10:2024 E30793.
- [52] Akbar R., Afzal S., Sun J., Faheem B., Bibi R., Azad R., Farid A., Ahmad D., Ataya F., Khan M. A., Khan B., Usman A., Alkenani N. (2024). Efficacy Of Various Plant Extracts And Synergism Against Domestic Species Of Rice Weevil Sitophilous Oryzae (Curculionidae: Coleoptera). Pol J Environ Stud. 33(3): 3033-3044.
- [53] Kavallieratos, N. G., Bonacucina, G., Nika, E. P., Skourti, A., Georgakopoulou, S. K. C., Filintas, C. S., Panariti, A. M. E., Maggi, F., Petrelli, R., Ferrati, M., Spinozzi, E., Perinelli, D. R., Canale, A., & Benelli, G. (2023). The Type Of Grain Counts: Effectiveness Of Three Essential Oil-Based Nanoemulsions Against Sitophilus Oryzae. Plants. 12(4): 813-825.
- [54] Ghosh A., Yadav U., Panigrahi C. K., Roy A. (2023). Efficacy Of Some Essential Oil For The Management Of Rice Weevil (Sitophilus Oryzae) On Stored Wheat. Int J Environ Clim Change. 13(10): 4248-4253.
- [55] Makai G., Jan F. H., Ijaz A., Jabeen R., Kausar R., Batool H. (2023). Efficacy Of Some Medicinal Plants Against Rice Weevil, Sitophilus Oryzae L. And Red Flour Beetle Tribolium Castaneum (Herbst). Pak Euro J Med Life Sci. 6(4): 401-408.
- [56] Arafah N. S. M., Jun C. Y., Mohamed S. S., Mohd N. Q. I., Zaharudin N. (2023). Effects Of Selected Plants Against Rice Weevil (Sitophilus Oryzae). Malays Appl Biol. 52(4): 113-118.
- [57] Aarthi K., Srinivasan G., Sampathrajan V., Author C., Mookiah S., Hemalatha G. (2022). Repellent Toxicity Of Mint Essential Oils Against Rice Weevil, Sitophilus Oryzae L. Pharma Innovation Journal, 11(9): 362-368.
- [58] Bakar, T. H., Idayu, N. M., Suhana, Z., Sidek, N., Mukhtar, N. K., Azmin, S. N., & Jusoh, M. Z (2022). The Effectiveness Of Natural Plant Powder In Controlling Rice Weevils (Sitophilus Oryzae). Iop Conf Ser Earth Environ Sci. 1102: 012003.
- [59] Kłyś M, Izdebska A, Malejky-Kłusek N. (2020). Repellent Effect Of The Caraway Carum Carvi L. On The Rice Weevil Sitophilus Oryzae L. (Coleoptera, Dryophthoridae). Insects. 11: 836-846.
- [60] Khanal D., Neupane S. B., Bhattarai A., Khatri-Chhetri S., Nakarmi N., Sapkota S., Mahat B., Pandey P., Sharma V. (2021). Evaluation Of Botanical Powders For The Management Of Rice Weevil (Sitophilus Oryzae L. Coleoptera: Curculionidae) In Rupandehi, Nepal. Adv Agric. 2021: 1-5.
- [61] Padmasri, A., Šrinivas, C., Lakshmi, K., Pradeep, T., Rameash, K., Anuradha, C., & Anil, B. (2017). Management Of Rice Weevil (Sitophilus Oryzae L.) In Maize By Botanical Seed Treatments. Int J Curr Microbiol Appl Sci. 6: 3543-3555.
- [62] Akbar R., Sharma M., Sharma D., Rafiq S, Tun N. R. (2021). Management Of Rice Weevil, Sitophilus Oryzae L. (Coleopteran; Curculinoidae) By Botanicals And Inert Dusts In Stored Wheat. Biol Forum – Int J. 13(4): 367-372.
- [63] Anandhabhairavi N., Shanthi M., Vellaikumar S. (2021). Evaluation Of Ethyl Acetate Extract Of Some Botanicals Against Rice Weevil Sitophilus Oryzae L. (Coleoptera: Curculionidae) In Stored Maize. Madras Agric J. 108: 247-252.
- [64] Imran M., Bashir L., Kubar M., Rind S., Sahto J., Gilal A., Mangi S. (2021). Efficacy Of Indigenous Crude Plant Extracts Against Rice Weevil, Sitophilus Oryzae L. 1763 (Coleoptera: Curculionidae): Crude Plant Extracts Against Rice Weevil. Proc Pak Acad Sci B Life Environ Sci. 58: 59-65.
- [65] Al-Harbi N. A., Al Attar N., Hikal D., Mohamed S., Latef A., Ibrahim A., Abdein M. (2021). Evaluation Of Insecticidal Effects Of Plants Essential Oils Extracted From Basil, Black Seeds And Lavender Against Sitophilus Oryzae. Plants. 10: 829- 852.
- [66] Ebadollahi A., Setzer W. (2020). Analysis Of The Essential Oils Of Eucalyptus Camaldulensis Dehnh. And E. Viminalis Labill. As A Contribution To Fortify Their Insecticidal Application. Nat Prod Commun. 15: 1-10.
- [67] Mehta V., Kumar S. (2020). Influence Of Different Plant Powders As Grain Protectants On Sitophilus Oryzae (L.) (Coleoptera: Curculionidae) In Stored Wheat. J Food Prot. 83: 2167-2172.
- [68] Jayakumar M., Arivoli S., Raveen R., Tennyson S. (2017). Repellent Activity And Fumigant Toxicity Of A Few Plant Oils Against The Adult Rice Weevil Sitophilus Oryzae Linnaeus 1763 (Coleoptera: Curculionidae). J Entomol Zool Stud. 5: 324-335.
- [69] Karunakaran S., Prasannath K., Komahan D. H. (2016). Insecticidal Activity Of Plant Powders Against Rice Weevil, Sitophilus Oryzae L. (Coleoptera: Curculionidae). Int J Res. 3: 427-429.
- [70] Abou-Elnaga Z. S. (2015). Efficacy Of Extracts Of Some Egyptian Plants Against Economically Important Stored Grain Pest Sitophilus Oryzae L. J Entomol Zool Stud. 3(1): 87-91.
- [71] Devi M. B., Devi N. V., Singh S. N. (2014). Effects Of Six Botanical Plant Powder Extracts On The Control Of Rice Weevil, Sitophilus Oryzae L. In Stored Rice Grains. Int J Agric Innov Res. 2: 683-686.
- [72] Akhtar M., Arshad M., Bakkar A., Raza A., Chaudhary M., Iram N., Akhtar N., Mahmood T. (2013). Repellent Effects Of Certain Plant Extracts Against Rice Weevil, Sitophilus Oryzae L. (Coleoptera: Curculionidae). Int J Agric Appl Sci. 5:69-73.

- [73] Asawalam E. F., Ebere U. E., Emeasor C. K. (2012). Effect Of Some Plant Products On The Control Of Rice Weevil Sitophilus Oryzae (L.) Coleoptera: Curculionidae. J Med Plants Res. 6(33): 4811-4814.
- [74] Khani M., Muhamad R., Omar D., Rahmani M., Rezazadeh S. (2011). Tropical Medicinal Plant Extracts Against Rice Weevil, Sitophilus Oryzae L. J Med Plants Res. 5:259.
- [75] Buatone S. & Indrapichate K. (2011). Protective Effects Of Mintweed, Kitchen Mint And Kaffir Lime Leaf Extracts Against Rice Weevils, Stitophilus Oryzae L., In Stored, Milled Rice. Int J Agric Sci. 3:133-139.
- [76] Yankanchi S, Gadache A. (2010). Grain Protectant Efficacy Of Certain Plant Extracts Against Rice Weevil, Sitophilus Oryzae L. (Coleoptera: Curculionidae). J Biopestic. 3(2): 511-513.
- [77] Govindan K., Nelson S. (2009). Insecticidal Activity Of Twenty Plant Powders On Mortality, Adult Emergence Of Sitophilus Oryzae L. And Grain Weight Loss In Paddy. J Biopestic. 2(2): 169-172.
- [78] Mohamed M., Abdelgaleil S. (2008). Chemical Composition And Insecticidal Potential Of Essential Oils From Egyptian Plants Against Sitophilus Oryzae (L.) (Coleoptera: Curculionidae) And Tribolium Castaneum (Herbst) (Coleoptera: Tenebrionidae). Appl Entomol Zool. 43: 599-607.
- [79] Viglianco A. I., Cragnolini C. I., Nassetta M., Cavallo A. (2008). Antifeedant And Repellent Effects Of Extracts Of Three Plants From Córdoba (Argentina) Against Sitophilus Oryzae (L.) (Coleoptera: Curculionidae). Bioassay. 3(4): 31-36.
- [80] Saljoqi A. U. R., Afridi M., Khan S., Rehman S. (2006). Effects Of Six Plant Extracts On Rice Weevil Sitophilus Oryzae L. In The Stored Wheat Grains. J Agric Biol Sci. 1(6): 1-5.
- [81] Lee S. E., Lee B. H., Choi W., Park B., Kim J. G., Campbell B. (2001). Fumigant Toxicity Of Volatile Natural Products From Korean Spices And Medicinal Plants Towards The Rice Weevil, Sitophilus Oryzae (L). Pest Manag Sci.57: 548-553.
- [82] Soujanya P. L., Sekhar J., Kumar P. (2016). Efficacy Of Plant Extracts Against Rice Weevil Sitophilus Oryzae (L.) In Stored Maize. Indian J Entomol. 78(4): 342-345.
- [83] Pal M., Tiwari S., Regmi R., Ali F. (2022). Efficacy Of Plant- Powders Against Rice Weevil, Sitophilus Oryzae (Linnaeus) (Curculionidae: Coleoptera) At Laboratory Condition. Saarc J Agric.19:331-338.
- [84] Bohinc T., Horvat A., Ocvirk M., Košir I. J., Rutnik K., Trdan S. (2020). The First Evidence Of The Insecticidal Potential Of Plant Powders From Invasive Alien Plants Against Rice Weevil Under Laboratory Conditions. Appl Sci. 10(21): 7828-7843.
- [85] Ogban E. I., Oparaeke A. M., Joshua E. D., Udeme A. U. (2022). Efficacy Of Three Plant Oils Against Sitophilus Oryzae L. (Coleoptera: Curculionidae) On Stored Polished And Local Rice. J Entomol Zool Stud. 10(6): 22-27.
- [86] Ismail S. M. (2023). Efficacy Of Ammi Majus (Apiaceae) And Mentha Microphylla (Labiatae) As Protectants Of Wheat Grain Against Sitophilus Oryzae L. (Coleoptera: Curculionidae). Int J Adv Biol Biomed Res. 11(1): 1-9.
- [87] Tayeb E. H. M., Saad A. S. A., Mackled I. M., Kordi A. M. A., Ahmed A. E. (2018). Botanical Powders And Essential Oils Alone Or Carried On Celatom[®] As Rice Protectants Against The Rice Weevil Sitophilus Oryzae (Curculionidae). Curr Sci Int. 7(4): 508-515.
- [88] Almadiy A., Nenaah G. E., Albogami B., Shawer D., Alasmari S. (2023). Cupressus Sempervirens Essential Oil, Nanoemulsion, And Major Terpenes As Sustainable Green Pesticides Against The Rice Weevil. Sustainability. 15: 8021.
- [89] Rahman S., Rahman M., Rahman K. M. M., Begum A. S., Roy B., Shahed S.M. (2007). Ethanolic Extract Of Melgota (Macaranga Postulata) For Repellency, Insecticidal Activity Against Rice Weevil (Sitophilus Oryzae). Afr J Biotechnol. 6(4): 379-383.
- [90] Acero L. H. (2019). Insecticidal Potential Of Sappan (Cesalpinia Sappan) Seeds Ethanol Extract Against Rice Weevil (Sitophilus Oryzae). Palawan Sci. 11: 85-96.
- [91] Khani M., Marouf A., Amini S., Yazdani D., Farashiani M., Ahvazi M., Khalighi-Sigarood F., Gharalari, A. H. (2017). Efficacy Of Three Herbal Essential Oils Against Rice Weevil, Sitophilus Oryzae (Coleoptera: Curculionidae). J Essent Oil Bear Plants. 20: 937-950.
- [92] Tangadi R., Jadhav G., Devarshi A., Yankanchi S. (2021). Efficacy Of Plant Essential Oils Against Rice Weevil, Sitophilus Oryzae L. J Biopestic. 14: 22-26.
- [93] Zeng L., Lao C., Cen Y., Liang G. (2010). Study On The Insecticidal Activity Compounds Of The Essential Oil From Syzygium Aromaticum Against Stored Grain Insect Pests. Julius-Kühn-Arch. 425: 766-771.
- [94] Widiyaningrum P., Candrawati D. (2020). Insecticidal Effect From Waste Extract Of Two Local Spices Plant On The Rice Weevil. J Phys Conf Ser.1918: 052002
- [95] Ocampo A., Braza M. K., Nellas R. (2020). The Interaction And Mechanism Of Monoterpenes With Tyramine Receptor (Sotyrr) Of Rice Weevil (Sitophilus Oryzae). Sn Appl Sci. 2: 592.
- [96] Liu T. T., Chao L. K. P., Hong K., Huang Y.J., Yang T. S. (2019). Composition And Insecticidal Activity Of Essential Oil Of Bacopa Caroliniana And Interactive Effects Of Individual Compounds On The Activity. Insects. 11: 23.
- [97] Tripathi A., Swami V., Khanuja S., Kumar S. (2003). Effect Of D -Limonene On Three Stored-Product Beetles. J Econ Entomol. 96: 990-995.
- [98] Aggarwal K. K., Tripathi A. K., Ahmad A., Prajapati V., Verma N., Kumar S. (2001). Toxicity Of L-Menthol And Its Derivatives Against Four Storage Insects. Insect Science And Its Application. 21(3):229-235.